
DP Physics HL 

Static Fluids 
	
**All	simulations	and	videos	required	for	this	package	can	
be	found	on	my	website,	here:		

http://ismackinsey.weebly.com/fluids-hl.html	
	
	
Fluids	are	substances	that	can	flow,	so	this	means	liquids	or	gases.	Static	fluids	refer	
to	those	that	are	not	flowing.	
	
Consider	a	cylinder	containing	a	liquid:	

	

	
Does	this	fluid	exert	pressure	on	the	sides	of	the	
container?	
	
Well,	you	know	that	if	this	were	a	water	tank,	it	could	
potentially	spring	a	leak	at	any	loose	rivets	anywhere	
on	the	container,	so	the	answer	must	be	yes.	

	
If	the	top	of	the	cylinder	were	replaced	by	a	piston,	and		a	force	were	applied:	
	

	

	
Would	the	volume	change?	
No,	it	can’t	because	a	liquid	can’t	be	compressed.	
	
What	pressure	would	be	exerted?	
There	must	be	pressure	on	all	sides	of	the	cylinder.	If	
the	pressure	on	the	piston	is	increase,	the	pressure	
throughout	the	liquid	increases.	This	is	Pascal’s	
Principle.	
	

	
Pascal’s	Principle:	The	pressure	applied	to	a	confined	fluid	

increases	the	pressure	throughout	the	fluid.	



If	the	container	is	flexible,	like	a	water	balloon,	this	multi-directional	pressure	will	
be	evident	in	the	way	that	the	container	changes	shape	when	a	force	is	applied.	
	

	
	
In	the	diagram	below	(there	is	no	gravity!),	you	can	also	imagine	that	the	force	on	
the	piston	is	forcing	water	out	of	the	holding	tank	in	all	directions.	This	only	
happens	if	there	is	pressure	in	all	directions.	
	

	
	
Consider	the	cylinder	of	liquid	shown	below	in	a	gravity-free	environment.	If	you	
push	on	the	piston,	it	doesn’t	move.	This	must	be	because	the	force	is	balanced	by	
the	liquid	pushing	back,	right?	Now	consider	the	layer	of	water	just	below	the	
piston.	If	the	only	force	acting	on	it	were	the	applied	force	from	the	piston,	it	would	
move	down.	It	doesn’t,	of	course,	and	so	that	must	mean	that	the	next	layer	of	water	
lower	also	exerts	an	upward	reaction	force.	
	

	



And	so	on…	this	continues	all	the	way	to	the	bottom	layer	of	water	in	the	container.	
The	pressure	at	any	point	within	the	liquid	is	the	same	in	all	directions	and	
therefore	the	fluid	doesn’t	flow.	
	
If	two	cylinders	with	different	diameters	are	connected,	as	below,	the	pressure	
everywhere	is	the	same,	but	because	of	the	difference	in	area,	the	resulting	force	is	
larger	on	the	larger	piston.	

	
	

	
	
	
	
	
	

	
Try	this	out	using	the	GeoGebra	simulation	“Pascal’s	Principle”.	
	
	

	
	
	
	

	



	
	
Answers:				a)	105	Pa			b)		1500	N	
	
(NOTE:	The	solutions	to	all	of	these	questions	can	be	found	in	the	folder	I	provided	
you.)	
	
	

Effect of Gravity 
	
Consider	again	a	cylinder	of	liquid,	this	time	in	a	gravitational	field,	and	consider	a	
“cube”	of	the	liquid	at	the	top	as	shown	in	the	diagram.	
	

	
	
Again,	the	pressure	on	the	cube	from	all	directions	is	equal	except	for	the	bit	of	
liquid	shown,	there	is	no	pressure	on	the	top	of	it	(assuming	no	air).	Without	gravity	
the	liquid	would	not	be	held	in	the	container.	With	gravity,	the	downward	force	of	
gravity	balances	this.	This	is	called	hydrostatic	equilibrium.	
	
	
	
	
	
	
	
	
	
	

	



Effect of Atmosphere 
	
Of	course,	in	reality,	we	also	have	air	on	top	of	the	liquid!	Air	is	also	a	fluid,	and	
exerts	pressure	on	the	top	of	the	liquid.	According	to	Pascal’s	Principle,	this	will	
increase	the	pressure	throughout	the	liquid,	so	if	atmospheric	pressure	is	PA,	the	
pressure	at	depth	h	will	be:	
	
	
	
	
	

The U-tube manometer (The ORIGINAL u tube!) 
	
This	device	was	commonly	used	to	measure	air	pressure	in	the	days	when	mercury	
was	in	regular	use!		It	consists	of	a	transparent	tube	containing	a	liquid.		
	

	
If	both	ends	of	the	u-tube	are	open	to	the	atmosphere,	we	have	the	situation	in	
diagram	(a).	The	liquid	is	in	equilibrium,	and	the	pressure	at	the	bottom	of	each	
column	must	be	equal.		
	
If	the	pressure	on	one	side	of	the	tube	is	higher,	the	height	of	the	liquid	on	the	other	
side	will	rise	to	compensate	as	in	diagram	(b).		To	achieve	hydrostatic	equilibrium	
the	pressure	on	both	sides	must	be	the	same.	The	pressure	on	the	left	is	the	
pressure	of	the	gas	and	the	pressure	on	the	right	is	the	air	pressure	+	the	pressure	
due	to	the	extra	height	of	liquid,	ρgΔh.	
	
	
	

	

	



If	the	liquid	is	water,	then	when	the	force	exerted	on	the	piston	is	10	N,	the	
difference	in	height	will	be	1	m.	Can	you	confirm	this	calculation?		
	
Try	it	out	using	the	GeoGebra	simulation	U-Tube	Manometer.	
	

	
	

Buoyancy and Archimedes’ Principle 
	
Consider	once	again	a	cube	of	liquid	like	the	one	shown	below:	
	
	
The	bottom	surface	is	deeper	than	the	top,	so	
the	pressure	will	be	greater	(due	to	gravity).	
	
If	the	top	depth	is	h1	and	the	bottom	depth	is	
h2,	then	the	difference	in	force	will	be:	
	

	

	
	
The	volume	of	the	cube	is	given	by:	V = A(h2 − h1) 	
	
Therefore		: ρgA(h2 − h1) 	is	equivalent	to	the	weight	of	the	cube.		
	

	

	



So	long	story	short….	
Archimedes’	Principle:	The	buoyant	force	on	a	body	
immersed	in	a	fluid	is	equal	to	the	weight	of	the	fluid	

displaced.	
	
	

	

In	the	two	diagrams,	the	
volume	of	liquid	displaced	
is	the	same.	BUT	the	
weight	of	liquid	displaced	
on	the	left	is	greater	
(because	salt	water	is	
more	dense)	therefore	the	
buoyant	force	is	also	
greater.	This	is	why	it	
easier	for	us	to	float	in	salt	
water.	 	

	

	
	



Now	you	try:	
	
A	block	is	submerged	in	water	as	shown	in	the	simulation	below.	The	bottom	
surface	of	the	block	is	at	a	depth	of	10	m.	The	base	of	the	block	is	square	and	has	
side	2	m	and	the	height	is	4	m	and	there	is	no	atmosphere.	Calculate:	
• The	pressure	at	the	level	of	the	bottom	of	the	block.	
• The	force	exerted	on	the	bottom	of	the	block.	
• The	pressure	on	the	upper	surface.	
• The	force	on	the	upper	surface.	
• The	difference	between	these	forces.	
Show	that	this	is	the	same	as	the	weight	of	fluid	displaced.	
	
To	check	your	answers,	use	the	GeoGebra	simulation	“Archimedes’	
principle”.	

	
	

	
Answers:	
41.		559	N					42.		a)	600	kgm-3		b)		4000	N					44.		67	cm3	



Fluid Dynamics	
	
We	will	now	consider	flowing	fluids.	For	simplicity	(you	know	you	love	it	Erick!)	
we’ll	look	at	the	simplified	case	of	what’s	called	the	steady	flow	of	ideal	fluids.	
	
Let’s	take	a	break	for	a	You	Tube	video,	shall	we?	On	the	website,	
entitled	“A	Non-ideal	Fluid”.	
	
The	water	in	this	clip	is	certainly	not	flowing	steadily,	you	can	see	that	the	water	
close	to	the	banks	is	travelling	slower	than	in	the	middle	and	there	is	a	lot	of	
turbulence	in	the	fast	moving	sections	(rapids).	
	
It	is	also	not	an	ideal	fluid.	There	is	friction	between	different	parts	of	the	liquid.	
The	water	in	contact	with	the	ground	is	stationary.	This	stationary	layer	slows	down	
the	next	layer,	and	so	on.	This	internal	friction	is	called	viscosity.	It’s	inconvenient	
and	complicated	and	annoying	…	so	let’s	ignore	it	J.	
	

 

An ideal fluid is incompressible and has zero viscosity. 
 

 
 

Streamlines and Flowlines 
	

Flowlines	–	lines	that	show	the	path	of	individual	particles	of	a	fluid.	
	

	
	
Streamlines	–	lines	that	show	the	velocity	of	individual	particles	at	any	moment	
in	time.		In	non-steady	flow,	these	are	constantly	changing.	
	

	



	
In	steady	flow,	the	streamlines	remain	constant,	and	therefore	the	flowlines	are	
straight.	

	
	
	

The Continuity Equation 
	
OK,	so	we	have	our	nice	lovely	ideal	fluid	behaving	properly	and	flowing	steadily	
through	a	nice	straight	wide	pipe	J.	Isn’t	life	lovely.	
	

	
	

The	cross-sectional	area	is	constant,	A.	The	volume	that	will	pass	through	a	given	
length	L	in	a	certain	time	period	will	be	AL.	So	the	mass	flowing	per	unit	time	will	
be:	

m = ρAL
Δt

= ρAv 	
	

	
If	the	fluid	were	to	flow	into	a	smaller	diameter	pipe,	the	flowlines	would	get	closer	
together.	
	

	
Mass	flowing	in	=	 ρ1A1v1 	
	



Mass	flowing	out	=	ρ2A2v2 	
	
If	there	are	no	leaks:			 ρ1A1v1 = ρ2A2v2 	
	
It’s	an	ideal	fluid	so	it	can’t	be	compressed	(the	density	can’t	change),	so:	
	
	
	
	
	
This	is	called	the	continuity	equation.	The	thinner	the	pipe	gets,	the	faster	the	flow.	
(Think	about	what	happens	if	you	squeeze	the	end	of	a	hose	pipe	.	You	probably	
already	know	that	this	will	speed	up	the	flow	of	water	–	now	you	know	why!)	
	
Note:	This	formula	is	written	on	your	formula	sheet	as	 Av = constant.	
	
Example	
Fluid	flows	through	a	pipe	like	the	one	in	the	diagram	
• 3m3	of	fluid	flow	into	the	pipe	per	second.	If	the	radius	of	the	first	pipe	is	4	m	

a)	 calculate	the	velocity	of	the	fluid	flowing	in.	
b)	 calculate	the	velocity	of	the	fluid	flowing	out	if	the	second	pipe	has	

radius	1m.	
	

Check	your	answers	using	the	GeoGebra	simulation	“Continuity	
Equation”.	
	

	
	

	



	
	
Answers:		
45.		3	m/s					46.		7.6	m/s					47.		10	m/s	
	
	

The Bernoulli Equation 
	
Watch	the	video	entitled	“Flow	video	1”	.	
	

	
	
The	red	dots	represent	particles	of	the	fluid	but	they	are	not	all	shown	–	the	pipe	is	
full.	
	
Does	the	velocity	change?	(Think	about	the	continuity	equation).	
	
What	happens	to	the	potential	energy	of	the	particles	as	they	go	uphill?	



	
Remember,	if	something	gains	energy,	work	must	be	done.	
	
(You	can	download	this	simulation	for	yourself	here:	
https://phet.colorado.edu/en/simulation/fluid-pressure-and-flow	
or	play	with	it	on	my	website.	It’s	fun	to	play	around	with!)	
	
	
Now	watch	this	second	video,	“Flow	video	2”.	
	

	
	
The	velocity	of	the	particles	clearly	increases.	Why?	
	
What	energy	changes	take	place?	
	
Is	work	done	on	the	water?	
	
	
Both	KE	and	PE	increase,	so	clearly	work	must	be	done	on	the	water.	
	
	
	
	
Something	must	be	pushing	the	fluid,	like	a	pump	or	a	piston.		
	
We	know	that	when	a	fluid	flows	into	a	section	of	pipe	with	smaller	cross-sectional	
area	its	velocity	increases.	This	means	acceleration	occurs,	which	means	there	is	an	
unbalanced	force.	Therefore	the	pressure	on	the	slow-moving	side	must	be	less	than	
the	pressure	on	the	fast	moving	side.	
	
We	also	know	that	if	a	fluid	flows	in	a	vertical	pipe,	the	pressure	is	greater	at	the	
bottom	than	at	the	top.	
	
	



Let’s	look	first	at	a	uniform	horizontal	pipe:	
	

	
	
A	cross-section	of	water	progresses	a	distance	x	in	some	period	of	time.	This	
distance	is	the	same	at	both	the	left	hand	side	or	right	hand	side	of	the	pipe.	
	
Consider	now	the	following	diagram:	

	
	
In	this	case,	water	is	flowing	uphill	in	a	narrowing	pipe.	A	volume	of	fluid	on	the	
right	hand	side	will	progress	a	greater	distance	than	the	same	volume	on	the	left	
hand	side	because	it	moves	faster	in	the	narrower	part.	
	
Also,	as	the	fluid	rises	it	gains	both	PE	and	KE	so	there	is	work	being	done	on	it.	
	
Water	from	beyond	the	edges	of	pipe	shown	exerts	pressure	at	each	end,	but	F1	(on	
the	diagram)	is	larger	than	F2	or	the	fluid	wouldn’t	be	flowing.	
	

	
W = F1x1 − F2x2 = P1A1x1 − P2A2x2 	

	
Because	Ax	=	V	=	mass/density:	

Net	work	done	=	
Work	done	on	the	water	at	the	bottom	–	work	done	on	the	water	at	the	top	

	



	

W = P1m
ρ

− P2m
ρ 	

	
The	work	done	is	the	change	in	energy	therefore:	
	

W = ΔPE + ΔKE 	
	
We	equate	the	2	formulas	to	get:	
	

P1m
ρ

− P2m
ρ

= mgz2 −mgz1 +
1
2 mv2

2 − 1
2 mv1

2
	

	
	 	 where	z	is	the	height	of	the	fluid.	

	
which	rearranges	to	give	us:	
	
	

	
	
	
This	is	the	Bernoulli	equation	and	can	be	applied	along	any	streamline.	

	

	



	
Your	turn:	
Water	flows	into	a	pipe	of	radius	2	cm	at	a	rate	of	100	cm3s-1	at	a	pressure	of	500	
kPa.	
• Calculate	the	velocity	of	the	water.	
	
The	pipe	is	connected	to	a	thicker	pipe	of	radius	5	cm	that	is	4m	above	the	height	of	
the	first	one.	
• Calculate	the	velocity	in	the	second	pipe.	
• Calculate	the	pressure	of	the	water	in	the	top	pipe.	
	
Use	the	GeoGebra	simulation	“Bernoulli	equation”	(note	that	the	
radius	and	height	are	not	the	same	scale)	to	check	your	answers.	
	

	

	
	

Answers:	
48.	a)	9.4	x	10-4	m3/s			b)	0.33	m/s				c)	504.4	kPa	
49.	a)	3.53	x	10-4	m3/s			b)	4.5	m/s				c)	290	kPa	



Hole in a Bucket (Torricelli’s Theorem) 
	
Consider	a	container	with	a	hole	in	the	bottom:	

	
Because	the	top	and	bottom	are	both	open,	the	pressure	is	the	same	as	atmospheric	
pressure	at	both	ends.	
	

Pa +
1
2 ρv1

2 + pgh = Pa +
1
2 ρv2

2 + pg × 0 	
	

Pa	cancels	on	each	side,	and	if	the	bucket	is	big	and	the	hole	is	small,	we	can	
approximate	that	v1	=	0.	(You	know	you	love	it,	Erick)	
	
So	we	end	up	with:		
	
	
	
	

The Venturi Meter 
	
The	pressure	difference	when	a	fluid	flows	through	a	constriction	can	be	used	to	
measure	fluid	flow.		
	
Have	a	look	again	at	the	GeoGebra	simulation	for	the	Bernoulli	equation.	You’ll	
notice	the	vertical	tubes	(manometers).	They	can	be	used	to	measure	the	pressure	
in	the	pipe.	
	
• Set	both	pipes	at	the	same	height.	
• Set	the	first	pipe	to	1.6	cm	and	the	second	to	0.4	cm	

	



• Set	the	flow	rate	to	800	cm3s-1	the	density	to	1000	kgm-3	and	P1	to	1000	kPa	
• Note	the	difference	in	height	of	the	manometers.	
• Reduce	the	flow	rate	to	400	cm3s-1	and	observe	the	change	in	Δh.	
This	arrangement	can	be	used	to	measure	the	flow	of	liquid	in	a	pipe.	
	
Show	that	the	equation	

	
Agrees	with	the	simulation.	
	
	

Stagnation Pressure 
	
According	to	the	Bernoulli	equation,	when	a	fluid	is	brought	to	rest	the	pressure	
must	increase.	

	
Any	fluid	that	flows	into	the	stationary	closed	pipe	will	stop,	therefore:	
	

P1 +
1
2
ρv2 = P2 	

So	we	can	see	that	the	pressure	in	the	closed	pipe	(P2)	is	greater	than	the	pressure	
elsewhere	(P1).	This	pressure	is	called	the	stagnation	pressure.	
	
If	we	measure	the	pressure	difference,	it	will	tell	us	the	flow	rate:	
	

P2 − P1 =
1
2
ρv2 	

	
	



Pitot Static Tube 
	
This	device	measures	the	difference	in	pressure	of	a	flowing	fluid	and	stagnation	
pressure	in	order	to	determine	flow	rate.	
	

	
Apply	Bernoulli's	equation	to	the	streamline	from	the	end	of	the	left	pipe	to	the	
bend	in	the	right	pipe	and	show	that:	
	

	
A	similar	design	can	be	used	to	measure	the	speed	of	gases,	like	shown	below.	This	
device	can	measure	the	speed	of	an	airplane.	
	

	



	
	
Answers:	
50.		21.5	m/s					51.		18	kPa					52.		6.5	x	10-5	m3/s	
	
	
	



The Bernoulli Effect 
	
The	most	obvious	example	of	the	Bernoulli	effect	is	the	lift-off	of	an	airplane.		
Because	of	the	shape	of	the	wing,	air	travelling	over	the	top	of	the	wing	has	a	higher	
velocity	than	underneath	it.	The	faster	moving	air,	according	to	Bernoulli,	has	lower	
pressure,	so	an	upward	force	results.	
	

	
	
(This	is	a	simplified,	incomplete	story	of	how	a	plane	gets	off	the	ground,	by	the	
way).	
	
There	are	other	cool	examples	of	the	Bernoulli	effect,	such	as	bending	it	like	
Beckham.	Maybe	you	can	put	your	mad	You	Tube	skills	into	action	and	learn	a	bit	
more.	
	
	

Real Fluids 
	

OK,	OK,	so	fluids	don’t	REALLY	have	zero	viscosity	and	flow	steadily	like	we	might	
like	them	too!	In	reality	they	have	internal	friction	and	therefore	viscosity.	
	
Watch	“Flow	video	3”	and	notice	the	difference	in	the	flow	rate	near	the	edges	of	the	
pipe	compared	to	the	centre.	(I	did	this	by	turning	friction	on,	by	the	way.)	
	

	



Flow	like	that	shown	in	the	video	is	called	lamina	flow	–	the	layers	do	not	mix.	This	
only	happens	at	low	velocities.	

	
	

Viscosity 
Viscosity	is	defined	in	terms	of	the	force	between	two	plates	moving	parallel	to	each	
other	separated	by	the	fluid.	
	
The	force	require	to	move	the	plate	is	proportional	to	its	velocity	(v)	the	area	of	the	
plate	(A)	and	the	separation	of	the	plates	L,	so:	
	

	
Which	gives:	
	
	
	
	
The	constant	of	proportionality	η 	is	the	viscosity.	What	are	the	correct	units?	

	
Stoke’s Law 
When	bodies	move	through	fluids,	they	experience	an	opposing	force	due	to	the	
viscosity	of	the	fluid.	The	magnitude	of	such	a	force	on	a	sphere	is	proportional	to	
the	size	of	the	sphere	and	its	speed.	
	
	
	
	
Terminal	Velocity	
	
An	object	falling	due	gravity	is	falling	through	a	fluid	(air).	According	to	Stoke’s	Law,	
there	will	be	a	force	opposing	its	motion	(air	resistance	as	we	called	it	earlier,	but	
also	known	as	the	viscous	force)	proportional	to	its	velocity.	As	we	know,	that	force	
will	increase	until	such	time	that	it	equals	the	force	due	to	gravity	resulting	in	zero	
net	force,	and	the	object	stops	accelerating	–	it	reaches	terminal	velocity.	
	

	

	



The	same	concept	can	be	applied	to	an	object	falling	in	a	different	fluid,	say	water.	
There	are	two	upward	forces:	buoyancy	and	viscous	force.		
	

	
Terminal	velocity	is	reached	when	the	sum	of	the	buoyant	and	viscous	forces	is	
equal	to	the	weight	of	the	object.	
	

Fv + Fb = Fg 	
From	Stoke’s	Law:	

Fv = 6πηrvt 	
	
And	if	we	replace	Fb	by	the	weight	of	fluid	replaced	(recall	Archimedes’	principle)	
and	Fg	by	the	weight	of	the	object:	

6πηrvt +
4
3πr

3ρ f g =
4
3πr

3ρsg 	
	
And	solving	for	terminal	velocity	gives	us:	
	
	
	
	
	
	
	

	



Turbulent Flow 
When	the	velocity	reaches	a	certain	point,	the	flow	will	no	longer	remain	laminar,	
but	will	become	turbulent	(the	layers	will	mix).	This	will	occur	when	the	Reynolds	
number	(Re)	exceeds	1000.	
	
	
	
	
	
	
What	would	the	units	be	for	the	Reynolds	number?	
	

	
Answers:	
53.		1.97	m/s					54.		950	kg/m3					55.		6.3	x	10-5	m3/s	

	


